Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Open Forum Infectious Diseases ; 9(Supplement 2):S734-S735, 2022.
Article in English | EMBASE | ID: covidwho-2189885

ABSTRACT

Background. Universities are interactive communities where frequent contacts between individuals occur, increasing the risk of outbreaks of COVID-19. We embarked upon a real-time wastewater (WW) monitoring program across the University of Calgary (UofC) campus measuring WW SARS-CoV-2 burden relative to levels of disease in the broader surrounding community. Figure 1 The colour scheme shows 6 sewer sub-catchments at the University of Calgary. Auto samplers were deployed at 4 sampling nodes within sub-catchments CR and YA (both residence halls), and UCE and UCS (catchments that include several campus buildings). Figure 2 Log10-transformed abundance (i.e., copies per mL) of nucleocapsid gene (i.e., N1) for SARS-CoV-2 for each sampling location during October 2021 - April 2022. Locations denoted by the same letters (A, B, or C) show no statistical difference (p > 0.05) according to the Wilcoxon rank-sum test. The WWTP sample corresponds to a catchment area covering most of Calgary including the university campus, for which sampling locations CR, UCE, UCS, and UCW are defined in Fig. 1. Methods. From October 2021 - April 2022, WW was collected thrice weekly across UofC campus through 4 individual sewer sampling nodes (Fig. 1) using autosamplers (C.E.C. Analytics, CA). Results from these 4 nodes were compared with community monitoring at Calgary's largest WW treatment plant (WWTP), which received WW from surrounding neighborhoods, and also from UofC. Nucleic acid was extracted from WW for RTqPCR quantification of the N1 nucleocapside gene from SARS-CoV-2 genomic RNA. Qualitative (positive samples defined if cycle threshold < 40) and quantitative statistical analyses were performed using R. Results. Levels of SARS-CoV-2 in WW were significantly lower at all campus monitoring sites relative to the WWTP (Wilcoxon rank-sum test p < 0.05;Fig. 2). The proportion of WW samples that were positive for SARS-CoV-2 was significantly higher for WWTP than at least two campus locations (p < 0.05 for Crowsnest Hall and UCE - University way and campus drive) according to Fischer's exact 2-sided test. The proportion of WW samples with positive WW signals were still higher for WWTP than the other two locations, but statistically not significant (p = 0.216). Among campus locations, the buildings in UCE catchment showed much lower N1 signals than other catchments, likely owing to buildings in this catchment primarily being administration and classroom environments, with lower human-to-human contact and less defecation compared to the other 3 catchments, which include residence hall, a dining area, and/or laboratory spaces. Conclusion. Our results show that SARS-CoV-2 RNA shedding in WW at the U of C is significantly lower than the city-wide signal associated with surrounding neighborhoods. Furthermore, we demonstrate that WW testing at well-defined nodes is a sampling strategy for potentially locating specific places where high transmission of infectious disease occurs.

2.
Open Forum Infectious Diseases ; 9(Supplement 2):S455, 2022.
Article in English | EMBASE | ID: covidwho-2189729

ABSTRACT

Background. WW surveillance enables real time monitoring of SARS-CoV-2 burden in defined sewer catchment areas. Here, we assessed the occurrence of total, Delta and Omicron SARS-CoV-2 RNA in sewage from three tertiary-care hospitals in Calgary, Canada. Methods. Nucleic acid was extracted from hospital (H) WW using the 4S-silica column method. H-1 and H-2 were assessed via a single autosampler whereas H-3 required three separate monitoring devices (a-c). SARS-CoV-2 RNA was quantified using two RT-qPCR approaches targeting the nucleocapsid gene;N1 and N200 assays, and the R203K/G204R and R203M mutations. Assays were positive if Cq< 40. Cross-correlation function analyses (CCF) was performed to determine the timelagged relationships betweenWWsignal and clinical cases. SARS-CoV-2 RNA abundance was compared to total hospitalized cases, nosocomial-acquired cases, and outbreaks. Statistical analyses were conducted using R. Results. Ninety-six percent (188/196) of WW samples collected between Aug/ 21-Jan/22 were positive for SARS-CoV-2. Omicron rapidly supplanted Delta by mid-December and this correlated with lack of Delta-associated H-transmissions during a period of frequent outbreaks. The CCF analysis showed a positive autocorrelation between the RNA concentration and total cases, where the most dominant cross correlations occurred between -3 and 0 lags (weeks) (Cross-correlation values: 0.75, 0.579, 0.608, 0.528 and 0.746 for H-1, H-2, H-3a, H-3b and H-3c;respectively). VOC-specific assessments showed this positive association only to hold true for Omicron across all hospitals (cross-correlation occurred at lags -2 and 0, CFF value range between 0.648 -0.984). We observed a significant difference in median copies/ ml SARS-CoV-2 N-1 between outbreak-free periods vs outbreaks for H-1 (46 [IQR: 11-150] vs 742 [IQR: 162-1176], P< 0.0001), H-2 (24 [IQR: 6-167] vs 214 [IQR: 57-560], P=0.009) and H-3c (2.32 [IQR: 0-19] vs 129 [IQR: 14-274], P=0.001). Conclusion. WWsurveillance is a powerful tool for early detection andmonitoring of circulating SARS-CoV-2VOCs.Total SARS-CoV-2 andVOC-specificWWsignal correlated with hospitalized prevalent cases of COVID-19 and outbreak occurrence.

3.
Webology ; 19(1):2748-2767, 2022.
Article in English | ProQuest Central | ID: covidwho-1964729

ABSTRACT

Malaysia recorded the first case of COVID-19 on the 25th January 2020 and is going through the third wave of this pandemic crisis. By 28th April 2021, the cumulative numbers reported confirmed cases of COVID-19 had reached 401,593 cases including 1,477 deaths. Key leaders such as the Prime Minister were responsible for governing effective crisis communication by giving quick responses on the pandemic situation and ensuring the citizens received and acted on the information provided by the government and other agencies. However, there is no "one size fits all" communication approach and this study attempted to evaluate the crisis communication approaches by the Prime Minister during the pandemic. This study conducted a thematic analysis of the Malaysian Prime Minister's crisis communication regarding the COVID-19 pandemic via the Prime Minister Office's Official Website. The Prime Minister's crisis communication was collected from public speeches and press statements released during March 2020 and June 2021. This study provides insights on the importance of crisis communication by key leaders to inspire public confidence and suggest future approaches to government crisis communication for social well-being.

4.
Annals of Behavioral Medicine ; 56(SUPP 1):S497-S497, 2022.
Article in English | Web of Science | ID: covidwho-1848927
5.
CHEST ; 161(1):A256-A256, 2022.
Article in English | Academic Search Complete | ID: covidwho-1625329
6.
Annals of Behavioral Medicine ; 55:S413-S413, 2021.
Article in English | Web of Science | ID: covidwho-1249925
SELECTION OF CITATIONS
SEARCH DETAIL